
B a s k e r v i l l e
The Annals of the UK TEX Users’ Group Editor: Editor: Sebastian Rahtz Vol. 4 No. 1

ISSN 1354–5930 February 1998

Articles may be submitted via electronic mail tobaskerville@tex.ac.uk , or on MSDOS-compatible discs, to
Sebastian Rahtz, Elsevier Science Ltd, The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, to whom any
correspondence concerningBaskervilleshould also be addressed.

This reprint ofBaskervilleis set in Times Roman, with Computer Modern Typewriter for literal text; the source is
archived onCTAN in usergrps/uktug .

Back issues from the previous 12 months may be ordered from UKTUG for £2 each; earlier issues are archived on
CTAN in usergrps/uktug .

Please send UKTUG subscriptions, and book or software orders, to Peter Abbott, 1 Eymore Close, Selly
Oak, Birmingham B29 4LB. Fax/telephone: 0121 476 2159. Email enquiries about UKTUG touktug-
enquiries@tex.ac.uk .

Contents

I Editorial . 3
1 Baskervillearticles needed . 3

1.1 LATEX 2ε . 3
1.2 TUG’94 . 3
1.3 Colophon . 3

II Mixing and matching PostScript fonts. 4
1 Introduction . 4
2 Matching fonts . 5

2.1 Matching heights . 5
2.2 Matching widths . 6
2.3 Matching weight . 7
2.4 Results . 8

3 Conclusion . 9
III Building virtual fonts with ‘fontinst’ . 10

1 Introduction . 10
2 A problem with fonts . 10
3 A solution: virtual fonts . 11
4 A problem with virtual fonts . 11
5 A solution: the ‘fontinst’ package . 11
6 Using the ‘fontinst’ package . 12

IV Do you really need virtual fonts?. 13
0.1 Easy, totally general reencoding . 15

V Further thoughts on virtual fonts 17
VI Colour slides with LATEX andseminar . 20

1 Slides and LATEX . 20
2 Using theseminar style . 20
3 Frame styles . 21
4 Interleaving notes, and selecting subsets 23
5 Control over slide size, fonts and magnification 23
6 Advanced use: customing theseminar control file 23

VIIBack(s)lash. 27
VIIITopical tip: Numbering theorems and corollaries in LATEX . 29

–1–

reprinted from Baskerville Volume 4, Number 1

IX Malcolm’s Gleanings. 30
0.1 Book review . 30
0.2 Information design journal . 32

1 Nonsense . 32
X Letters to the editor. 34

1 A TEX front-end inNextStep . 34
2 Command line TEX for ever . 34
3 JoveLATEX nods . 35

XI UKTUG Business Reports. 36
1 Membership of UK TEX Users Group (1994) 36

1.1 Membership Data . 36
2 UKTUG accounts 1 October 1992 to 19 August 1993. 37

2.1 Statement of Income and Expenditure 37
2.2 Balance sheet . 37
2.3 Position with regard to opening balance. 37

–2–

I Editorial

1 Baskervillearticles needed

We need material forBaskerville! Please send your interesting articles to the editor, and delight fellow TEX users.
Please note the following schedule of copy deadlines:

Is
su

e
Sub

m
it

m
at

er
ia
l

fo
r p

ub
lic

at
io
n

Sub
m

it

la
st-

m
in
ut

e
no

tic
es

Po
stS

cr
ip
t

file

se
nt

to
pr

od
uc

-

tio
n

te
am

4.2 Mar 21 Mar 28 Apr 4

4.3 May 23 May 30 Jun 6

4.4 Aug 15 Aug 22 Aug 29

4.5 Oct 17 Oct 24 Oct 31
Each issue ofBaskervillewill have a special theme, although articles on any TEX-related subject are always wel-

come. Contributions on the themes for the first half of 1994 are eagerly solicited:

☞ Baskerville4.2 will be a special issue on LATEX2e (which may be fully released by then);
☞ Baskerville4.3 will be a ‘back to basics’ special issue on mathematical and tabular typesetting.

Baskervilleregularly publishes articles answering common TEX questions, and these are available as technical notes
to UKTUG members.

1.1 LATEX 2ε
Shortly afterBaskerville3.1 was sent out, the first release of LATEX 2ε appeared in the electronic networks, fol-
lowed after Christmas by the launch of theLATEX Companionto tell us how to use it all. 1994 is going to be
a good year! Those with access to the Internet can fetch the LATEX 2ε code from ftp.tex.ac.uk , /tex-
archive/macros/latex2e/core . First get the file called ‘features.tex’ and discover what it is all about. UK-
TUG members without network access can send an SAE to theBaskervilleeditor or the UKTUG treasurer to receive
a copy of the macros on Mac or PC disk (donot send us disks, please!).

And there is the conference! Not just the package; not just a book; buttwo whole daysof information about LATEX 2ε,
given by the people who wrote it! Grab the application form with thisBaskervilleand fill it in now. We want to see as
many UKTUG members there as possible.

1.2 TUG’94
Earthquakes and all, who can resist the chance to visit Southern California, and do TEX at the same time? From
Point Lobos to Hollywood, from Knuth to Clint, from colour to\csname : all the world will be at the1994 TEX
Users Group Meeting, to be held in Santa Barbara from the 31st July to the 4th August. The theme this year is just
‘Innovation’ — find out whats new! Not just papers, but tutorials, debates, bowling matches . . . Leslie Lamport, Tom
Rokicki, and Joachim Schrod are keynote speakers at the conference, and you too can still submit a paper by contacting
the TUG office, or via theBaskervilleeditor. But paper or not, plan to be there. TheBaskervilleeditor will buy a beer
for anyone who comes with a copy of this issue . . .

1.3 Colophon
This issue ofBaskervilledeals especially with issues of PostScript, to go with the group’s January meeting on the
subject of using PostScript fonts. In the next issue we will include a transcription of the question and answer session,
and the full gory details of telling LATEX 2ε about a new PostScript font.

This issue of the journal was created entirely with the test distribution of LATEX 2ε and printed on a Hewlett Packard
LaserJet 4. It was set in ITC New Baskerville Roman, with Computer Modern Typewriter for literal text. Production
and distribution was undertaken in Cambridge by Robin Fairbairns and Jonathan Fine.

reprinted from Baskerville Volume 4, Number 1

II Mixing and matching PostScript fonts

Angus Duggan

Harlequin Ltd.

Barrington Hall

Barrington

Cambridge CB2 5RG

angus@harlequin.co.uk

1 Introduction

The Apple LaserWriter1 was the product that introduced PostScript2 to the world, bringing in its wake a major change
in the publishing and printing industry. PostScript is now used everywhere from the home to high-quality printing
presses.

PostScript also made scalable font technology popular; instead of using bitmaps for one particular resolution and
font size, outlines can be scaled to the size required quickly. The original LaserWriter came with a set of thirteen
scalable outline fonts, often known as the “LaserWriter 13”. The LaserWriter fonts are shown in table 1; there are
eight faces from Linotype AG (the Times and Helvetica families), four from IBM (the Courier family), and one
from Adobe (Symbol). There is one serifed text face family (Times) and an accompanying mathematical symbol set
(Symbol), one sans-serif text face family (Helvetica), and one monospaced family (Courier).

Times-Roman Helvetica Courier
Times-Bold Helvetica-Bold Courier-Bold
Times-Italic Helvetica-Oblique Courier-Oblique
Times-BoldItalic Helvetica-BoldOblique Courier-BoldOblique
Symbol

Table 1.The original 13 LaserWriter fonts

The choice of typeface styles for the LaserWriter was well-informed— for computer usage a monospaced font is
required. The mathematical symbol set, while not complete, encouraged technical writers to invest in PostScript laser
printers. A choice of a serif and sans-serif font families was provided for text setting.

Unfortunately, the particular typefaces chosen look terrible when used together.
The weight and width differences between the LaserWriter 13 fonts make the page look blotchy; some words jump

out at the reader, some seem to vanish, leaving pale holes in the page. Variations in width, ex-height (the height of the
lowercase letters, traditionally measured from the lowercase x), and to a lesser extent capital height make the text less
legible. Given these problems with documents composed with the original LaserWriter fonts, why not use other fonts?
The answer to this question depends on the purpose of the document.

If a document is being created for personal reading, or for a number of people at one place, then purchasing a set
of typefaces which complement each other is an admirable solution. Similarly, if the document is being prepared for
publication, purchasing and using the fonts suggested by the designer or printer is advised.

If the PostScript source of the document is being distributed to a wider audience, with no knowledge of the facilities
on which it will be printed, then the story is different. The original thirteen LaserWriter fonts are the only fonts that
can be guaranteed to be available on any PostScript laser printer or previewer, anywhere in the world.3 There is also
the major consideration that giving away the fonts used in a document (even if they are embedded in the document)

1LaserWriter is a trademark of Apple Computer, Inc.
2PostScript is a trademark of Adobe Systems Incorporated.
3There is a larger set of 35 fonts which was distributed with the LaserWriter Plus which are available on most PostScript printers now. There are

still original LaserWriters in use, so I still consider the original 13 fonts as the only guaranteed fonts.

reprinted from Baskerville Volume 4, Number 1

Mixing and matching PostScript fonts

may be illegal under copyright law or licensing agreements. Even if the fonts required to print a document are freely
distributable, using the resident fonts has the beneficial side effect of reducing the size of the document.

A growing number of scientific papers, software manuals and technical notes are being made available in PostScript
form, and many of these use the ugly combination of the original LaserWriter fonts.

Fortunately, the outline descriptions of fonts in PostScript allow us to do something about the variations in width,
height and weight of the fonts. Anamorphic scaling can be used to squash wide characters, stretch short characters,
and even slant characters to create obliqued fonts if desired. PostScript also has tricks which can be used the thicken
light characters.

2 Matching fonts

To match the width and height of characters from different fonts better, we need to scale the charactersanamorphically;
that is, to alter their aspect ratio. The idea is to make the weight, width, x- and cap height of the fonts more consistent,
so that they are have a similar colour. (The colour of a font is the amount of ink or toner that is placed on the page
when printing; open, wide fonts have a less colour than close, heavy fonts.) The change of letterform still provides
cues to the distinction between the elements of the page, but the anoying distractions of light spaces and dark blobs
will be removed. The more even height of characters will aid legibility.

TEX cannot scale characters anamorphically, so a small amount of PostScript and virtual font work will be necessary.
All of the matching steps I will describe can be done in PostScript alone, but virtual fonts make the process of using
TEX with the altered fonts much easier. The examples given are for use with Rokicki’sdvips driver, but the techniques
can be adapted to most DVI to PostScript converters.

2.1 Matching heights
The first step in the process of scaling fonts to match is to sort out the height differences. There are two parts to
consider; to match the ex-height so that running text looks good, and to match the capital height so that headers look
good. Figure 1 shows the wide variation in width, weight and height of the LaserWriter fonts.

Widths: Times Helvetica Courier
HLGYXM 43.88pt HLGYXM 42.23pt HLGYXM 36.0pt
hlgyxm 30.56pt hlgyxm 31.67pt hlgyxm 36.0pt

Cap heights: HHH LLL GGG YYY XXX MMM
Ex-heights: hhh lll ggg yyy xxx mmm

Figure 1. Width, height and weight variation in the LaserWriter fonts

TEX can be used to match the ex-heights of fonts automatically. The following (relatively obscure) piece of LATEX
code uses the “ex” fontdimen to construct and use a LATEX2e font definition for a font scaled to match the ex-height of
the current font. (This piece of code relies on a macro which does long division of one integer by another, returning a
fractional result. For clarity’s sake, this macro is not included.)
%% need long division routine
\input longdiv.sty % omitted for clarity!

\def\psexfont#1#2#3#4#5{{%
\@tempdima=1ex% ex-height of current font
\font\tmp=#5\space at\f@size pt
\tmp\@tempdimb=1ex% ex-height of loaded font
\@tempcnta\@tempdima \@tempcntb\@tempdimb
% long division result in ex@scale macro
\long@divide\ex@scale\@tempcnta\@tempcntb
\edef\psex@sizes{<->[\ex@scale]#5}%
\DeclareFontShape{#1}{#2}{#3}{#4}%

{\psex@sizes}{}}%
}

% Times-Roman at same ex-height as current font
\DeclareFontFamily{OT1}{times-xm}{}
\psexfont{OT1}{times-xm}{m}{n}{ptmr}

–5–

reprinted from Baskerville Volume 4, Number 1

There are disadvantages to this method; it wastes one of TEX’s precious font slots for every font loaded, and some-
times the fontdimen is not accurate, either because of rounding errors in the conversion or because of incorrect infor-
mation in the original AFM file (Adobe Font Metric — the standard files containing metric information for PostScript
fonts).

A method which avoids the loss of the font slot is to create a virtual font containing the scaled font. The amount to
scale the font by can be determined either by comparing the ex-height parameters in the original AFM files, or printing
out large character samples and measuring the ex-heights if the first method does not give good results. If the second
method is used, be sure to print a character with a flat top to it, as characters with rounded tops usually overshoot
the x-height deliberately. A virtual font file for the scaled font can be created by usingafm2tfm to create a virtual
property list of the encoded file, and using a utility such as my ownmakevpl (available by anonymous ftp from
ftp.dcs.ed.ac.uk:pub/ajcd/vplutils.tar.Z) to re-scale the virtual property list file. For example, the
following command would scale the Times-Roman font up by 15%.

makevpl -at 11.5 ptmr:extex >stimes.vpl

This virtual property list file can then be compiled into a virtual font file withvptovf . The capital heights can be
matched in a similar way.

Rather than arbitrarily matching all of the PostScript fonts to the height of one of them, it is a good idea to match
them to the height of the default TEX font (i.e. Computer Modern Roman). If any symbols are required which are not
provided by the PostScript fonts, the symbols can be slipped in without the result looking too ugly.

The proportions of ex-height to capital height are different for each of the LaserWriter fonts, so a single scaling
factor will in general not be sufficient to match both of the ex-height and capital height. The easiest way to get different
scaling factors for the capitals and lowercase is to make two virtual fonts with the desired scalings as described above,
and merge them using a utility such asmakevpl or Alan Jeffrey’sfontinst . It is not desirable to match both the
ex-heights and cap-heights of Courier unless the widths are adjusted to keep the matched font monospaced.

This matching process only needs doing for one member out of each family of fonts; the other members should use
the same scaling ratios to stay consistent with each other. Figure 2 shows the results of matching the ex-heights and
cap-heights of the LaserWriter fonts.

Matched cap heights
HHH LLL GGG YYY XXX MMM
hhh lll ggg yyy xxx mmm

Matched ex heights
HHH LLL GGG YYY XXX MMM
hhh lll ggg yyy xxx mmm

Matched cap and ex heights
HHH LLL GGG YYY XXX MMM
hhh lll ggg yyy xxx mmm

Figure 2. LaserWriter fonts with matched ex- and/or cap-heights

2.2 Matching widths

Matching the widths of the fonts is one of the easiest effects to achieve. Theafm2tfm program has an option to
extend or compress PostScript fonts. For example, a virtual font for the Times-Roman font extended to 110% of its
normal width by the command can be created by the command:

afm2tfm Times-Roman -e 1.1 -v ptmrx Times-Extd

This will create a virtual property list file calledptmrx.vpl , which can be scaled up or down as described above
to match the heights of the fonts, and then compiled into a virtual font withvptovf . A TEX font metric (TFM) file will
also be generated, which should be put in an appropriate directory for TEX to find it. A line needs to be inserted into
thepsfonts.map file to tell dvips about the pseudo-font Times-Extd, which it will create from the Times-Roman
base font if it is used:

Times-Extd "/Times-Roman 1.1 ExtendFont"

–6–

Mixing and matching PostScript fonts

Extending or compressing fonts in this way has the undesirable effect of altering the ratio of the horizontal strokes
to the vertical strokes; these fonts are not true compressed or extended designs, and there is unfortunately nothing that
can be done in PostScript to counteract this effect.

When matching the font widths, it is undesirable to make all of the em-widths the same; the design of Courier
requires more space than Times Roman or Helvetica. What is desired is a more acceptable balance of widths so
that the most compact font (Times) does not look bad when used beside the widest font (Courier). Figure 3 shows a
comparison of the original widths of the characters and a possible choice of new widths.

Normal laserwriter fonts
Times Helvetica Courier
HLGYXM 43.88pt HLGYXM 42.23pt HLGYXM 36.0pt
hlgyxm 30.56pt hlgyxm 31.67pt hlgyxm 36.0pt

Height and width matched laserwriter fonts
Times matched 105 % Helvetica matched 100 % Courier matched 90%
HLGYXM 47.1816pt HLGYXM 39.93031pt HLGYXM 32.82541pt
hlgyxm 30.6948pt hlgyxm 26.15741pt hlgyxm 32.80664pt

Figure 3. Comparison of original widths and new widths

Font family Cap height ratio ex-height ratio Extension Stroke Width

Times 10.24 9.57 105 %

Helvetica 9.46 8.26

Courier 12.05 10.13 90 % 20

Figure 4. Parameters

2.3 Matching weight
Matching the weights of the fonts is one of the most awkward effects to achieve. The intention is to achieve a more
even gray colour from pages with mixed fonts. Courier is the main problem in this respect; most versions of Courier are
significantly lighter than Times Roman and Helvetica. The versions of Courier from some foundries (e.g. Bitstream)
are heavier than the Adobe version usually found in PostScript printers.

Some early versions of the Courier fonts had a painting type 1, meaning that the font was rendered by a single line
down the centre of each stroke; these fonts could be made lighter or darker by increasing the width of the line used.
More recent versions of Courier are defined as outlines, with which the same trick cannot be used. A similar effect can
be achieved by rendering the character outline with an increased linewidth on top of filled character. This can be done
by the following PostScript commands which create a new type 3 (user defined) font which places both outlined and
filled characters on top of each other:
%!
% Courier-Heavy font definition
/Courier-Heavy

10 dict begin
/FontType 3 def
/FontMatrix [0.001 0 0 0.001 0 0] def
/FontName /Courier-Heavy def
/Courier dup findfont 1000 scalefont def
/Encoding Courier /Encoding get def
/FontBBox [% adjust for outline width

Courier /FontBBox get aload pop
2 {10 add 4 1 roll} repeat
2 {10 sub 4 1 roll} repeat

] def
/Courier-Outline dup % outlined Courier

Courier dup length 1 add dict begin
{

1 index /PaintType eq {

–7–

reprinted from Baskerville Volume 4, Number 1

pop 2 def
} {

1 index /FID eq {
pop pop

} {
def

} ifelse
} ifelse

} forall
/StrokeWidth 20 def
currentdict

end definefont def
/charstring () def % string for charcode
/BuildChar { % dict charcode

exch begin
charstring dup 0 4 -1 roll put
Courier setfont
dup stringwidth FontBBox aload pop
setcachedevice % set char metrics
0 0 moveto
gsave

dup show % fill character
grestore
Courier-Outline setfont
show % draw outline

end
} def
currentdict

end
definefont pop

If the PostScript character cache is large enough this method will not cause too much of a slowdown because each
thickened character will be constructed only once for each size used. The size of each character cannot be easily
extracted from the original Courier font, so each character takes the maximum size of cache needed, determined from
the original font’s bounding box.

Dvips can be made aware of this new font by putting the following line in thepsfonts.map file:
rpcrsb Courier-Heavy <coursb.pf3

The font metrics of this heavier font are the same as the original Courier font, so the AFM file for the original font
can be copied and used to generate the virtual font and TFM file needed for use with TEX. Figure 5 shows how the
weight of the new heavy version of Courier compared with the original Courier and Courier-Bold.

Courier HLGYXMhlgyxm 72.0pt
Courier-Heavy HLGYXMhlgyxm 72.0pt
Courier-Bold HLGYXMhlgyxm 72.0pt

Figure 5. Comparison of Courier weights

This technique increases the width and the height of the character by the width of the stroke used on the outlined
character, so another iteration around the height and width matching steps may be needed to improve the results. The
extra width is added on all sides of the character, so the baseline may also need adjusting, by altering the coordinates
of themoveto command in the PostScript header.

This technique can really only be used to thicken characters. If characters are thinned by painting a white outline
over the filled character, it will not yield a satisfactory result. At small sizes the inside of the character outline may not
have any space in it, and so the final character will have gaps in it.

2.4 Results
The techniques used here do not add much (if anything) to the final size of documents; the PostScript header files
downloaded are very small. Table 4 shows the height and width ratios which I am currently using; fine tuning these

–8–

Building virtual fonts with ‘fontinst’

ratios for nicer looking output will take some more time. The Symbol font should probably follow the treatment of the
Times family, since it was designed to be complementary to Times.

And finally, a sample of the resulting output. Matching both the ex-height and cap height without adjusting their
relative widths tends to make the capitals look wider; some more experiments to reduce this effect will be necessary.

Times New Roman, or Times Roman as it is often
known, was designed by the typographer Stanley Morison
for The Times. The design was based on Monotype Plantin
113; Morison did not draw the designs himself (he was not
a designer), but got an artist working for The Times to draw
it and revise the drawings until he was satisfied. Helvetica
was originally produced by the Swiss Haas’sche foundry in
1957 under the name Neue Haas-Grotesk, to a design by
Max Meidinger. It was recut by the German Linotype firm,
who renamed it Helvetica. Courier was designed in 1952
for IBM by Howard Kettler, merging the geometric “egyp-
tians” Stymie, Memphis, Beton, and Rockwell. The names
ptmr, phvr, and pcrr are used for the normal shapes and
weights of Times, Helvetica and Courier in Karl Berry’s
font naming scheme, used by dvips.

3 Conclusion

Anamorphic scaling by its very nature distorts the shapes of the characters. In general, distorting a pleasing typeface
will not give another pleasing typeface. The techniques described in this note make minor distortions to a set of
typefaces in order to make their use together more pleasing. These techniques are only useful in limited circumstances,
i.e. when the only fonts you can rely on using are the base LaserWriter fonts. As noted in the introduction, there are
circumstances where this is the case, and in these cases almost anything is better than the ugly sight of Times, Helvetica
and Courier mixed together in their natural state.

–9–

III Building virtual fonts with ‘fontinst’

Alan Jeffrey

alanje@cogs.susx.ac.uk

1 Introduction

This document gives a brief overview of thefontinst package. Thefontinst package is used to buildvirtual
fonts(VFs) which allow PostScript fonts to be used as drop-in replacements for the Computer Modern fonts in TEX.

Below, I’ll describeVFs briefly, and describe how they can be built using thefontinst package.

2 A problem with fonts

One of the biggest problems about using fonts in TEX is encodings, that is the order the characters come in the font.
For example, the default encoding for Adobe’s Times-Roman font is the ‘Adobe Standard encoding’:

 ! " #$ %& ' () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; < => ?
@ ABCDE FGH I J KLMNO
PQR S TUVWXYZ [\] ^ _
` a b c d e f g h i j k l mn o
p q r s t u v w x y z { |} ~

The default encoding for TEX, however, is the ‘TEX text encoding’. The Adobe Times-Roman font in the ‘TEX text
encoding’ is:4

Γ ∆ ΘΛ Ξ Π Σ ϒ ΦΨΩ ff f f

! #$%& ' () * + , - . /
0 1 2 3 4 5 6 7 8 9 : ; = ?
@ABCDEFGH I JKLMNO
PQRS TUVWXYZ []
` a b c d e f g h i j k l mn o
p q r s t u v w x y z

There are many other competing encodings: ‘ISO Latin-1’, ‘TEX extended text’ (or ‘Cork’), ‘Macintosh’, the list is
seemingly endless.

In addition, different encodings contain different glyphs. The TEX text encoding is supposed to contain a dotless ‘j’
character, and a slash for building ‘ł’ and ‘Ł’, but very few fonts contain these characters, and their places are taken by
black squares above.

The problem of incompatible font encodings is addressed in TEX by virtual fonts.

4The TEXnically minded may note that the glyphs ‘ł’ and ‘Ł’ are not normally in the ‘TEX text encoding’. This is because Computer Modern has
a special ‘ł-slash’ glyph for building ‘ł’ and ‘Ł’, which Adobe Times-Roman does not have. Its place is therefore taken by a black square, and there
are ligatures with ‘l’ and ‘L’ to produce ‘ł’ and ‘Ł’. Thus this font is drop-in compatible with Computer Modern, despite the lack of an ‘ł-slash’
glyph.

reprinted from Baskerville Volume 4, Number 1

Building virtual fonts with ‘fontinst’

3 A solution: virtual fonts

As far as TEX is concerned a virtual font (VF) is a font like any other. It has a TEX font metric file, which contains the
dimensions of each character, together with ligatures, kerning, and other typographical information.

However, aVF does not have an associated bitmap, Type 1 font, TrueType font, or other information about what the
font should look like.

Instead, aVF has an associated.vf file, which contains a small fragment ofdvi file for each character in the font.
Thisdvi fragment may contain characters from other fonts, rules or\specials .

For example, the ‘Adobe Standard’ encoded Times-Roman font above is a ‘raw’ Type 1 font, but the ‘TEX text’
encoded Times-Roman font is a virtual font.

• The ‘ff’, ‘ffi’ and ‘ffl’ ligatures are faked by putting an ‘f’ next to an ‘f’, ‘fi’ or ‘fl’.
• The missing ‘dotless j’ and ‘ł-slash’ are rules, together with a ‘Warning: missing glyph’\special .
• The Greek upper case come from the Symbol Type 1 font.
• The other characters come from the Times-Roman Type 1 font.

Any dvi driver which understandsVFs and can use Type 1 fonts can use the TEX text Times-RomanVF as a drop-in
replacement for Computer Modern.

4 A problem with virtual fonts

One stumbling block about usingVFs is that they are not very easy to generate. Despite having been in existence for
four years, there are very few tools for creatingVFs.

The most important tool is Knuth’svptovf , which convertsVirtual Property Lists(VPLs) intoVFs. Unfortunately,
theVPL language is rather opaque; for example theVPL code for the Adobe Times character ‘ff’ is:

(CHARACTER D 11
(CHARWD R 6.47998)
(CHARHT R 6.81995)
(CHARDP R 0.0)
(MAP

(SELECTFONT D 1)
(SETCHAR D 102)
(MOVERIGHT R -0.17993)
(SETCHAR D 102)
)

)

Editing VPL files by hand is something of a black art, and there are few tools for manipulating them.
The main tool for generatingVPLs is Rokicki’safm2tfm , which converts theAdobe Font Metric(AFM) files

which come with every PostScript font intoVPLs. Unfortunately,afm2tfm cannot produce fonts with more than one
raw font (for example the ‘TEX text’ encoded Times-Roman uses Symbol for the upper case Greek) and had problems
with math fonts.

5 A solution: the ‘fontinst’ package

Thefontinst package is designed to read AFMs and produceVPLs. It:

• Is written in TEX, for maximum portabilty (at the cost of speed).
• Supports the TEX text, TEX math, and extended TEX text encoding.
• Allows fonts to be generated in an arbitrary encoding, with arbitrary ‘fake’ characters—for example the ‘ff’ char-

acter can be faked if necessary by putting an ‘f’ next to a ‘f’.
• Allows caps and small caps fonts with letter spacing and kerning.
• Allows kerning to be shared between characters; for example ‘Å’ can be kerned as if it were an ‘A’. This is useful,

since many PostScript fonts only include kerning information for characters without accents.
• Allows the generation of math fonts.
• Allows more than one PostScript font to contribute to a TEX font; for example the ‘ff’ ligature can be taken from

the Expert encoding, if you have it.
• Automatically generates anfd file for use with LATEX 2ε.

–11–

reprinted from Baskerville Volume 4, Number 1

The fontinst package is available as freeware from the CTAN archives, along with a selection ofVFs which have
been generated withfontinst .

Version 0.19 offontinst is described in the proceedings of the Aston TUG AGM (TUGboat14(3)). This de-
scription is now largely out of date.

The VFs generated byfontinst will be the standardVFs for use with Sebastian Rahtz’spsnfss package for
LATEX 2ε.

6 Using the ‘fontinst’ package

The fontinst package comes with full documentation in the filefontinst.tex . The simplest way to start
to usefontinst is to edit the filefonttime.tex , shown in Table 1. This tells TEX to create the Adobe Times
Roman fonts in the ‘TEX extended text’ (T1) encoding, using the files:

• ptmr0.afm , ptmri0.afm , ptmb0.afm and ptmbi0.afm , the Times-RomanAFM files.
• latin.mtx , theTEX metricfile containing the default Latin characters.
• T1.etx andT1c.etx , theTEX encodingfiles containing the ‘TEX extended text’ and ‘TEX extended tex caps &

small caps’ encodings.

This produces a number of PL andVPL fonts, which can be converted into TEX fonts usingpltotf andvptovf .
For example by replacing every occurrence ofptm by ppl you can install the Adobe Palatino fonts.
If you generate any fonts withfontinst which you think other people might want to use, please send them to

me, and if I like them, I’ll include them in thefontinst contributors directory.

\input fontinst.sty

\needsfontinstversion{1.303}

\installfonts
\installfamily{T1}{ptm}{}
\installfont{ptmrq}{ptmr0,latin}{T1}{T1}{ptm}{m}{n}{}
\installfont{ptmrcq}{ptmr0,latin}{T1c}{T1}{ptm}{m}{sc}{}
\installfont{ptmriq}{ptmri0,latin}{T1}{T1}{ptm}{m}{it}{}
\installfont{ptmbq}{ptmb0,latin}{T1}{T1}{ptm}{bx}{n}{}
\installfont{ptmbcq}{ptmb0,latin}{T1c}{T1}{ptm}{bx}{sc}{}
\installfont{ptmbiq}{ptmbi0,latin}{T1}{T1}{ptm}{bx}{it}{}

\endinstallfonts

\bye

Table 1.The filefonttime.tex

–12–

IV Do you really need virtual fonts?

Berthold Horn

Y&Y 71172.524@compuserve.com

Introduction
Since many people feel very strongly about these issues, I’ll need to go into some detail to try and sway their opinion.
I’ll first discuss why virtual fonts arenotneeded for use of non-CM fonts —or for reencoding. Then I’ll explain what
virtual fontsmayactually be useful for (and why even for those purposes there are better ways of going about things).

Part of the confusion may result from lumping together of virtual font support with support for re-encoding of fonts.
One mostdefinitelyneeds re-encoding, but it is not part ofVF, and in fact, virtual fontsper seare inadequate for this
task (see below).

This is a deeply religious issue, so I don’t expect to make too many instant converts. We all fall in love with the
software tools we use and often assume that the way they do things in theonlyway they can be done, or perhaps even
that they implement thebestway. Unfortunately, to make my points, I’ll be stepping on some toes (lightly I hope).

By the way, many of the points I wish to make cannot be made without referring to specific programs. I hope what
I say will not soundtoomuch like advertising.

Naturally, there will be many that disagree with what I say here. I’ll be happy (or maybe not!) to read their comments
and respond. From InterNet, send email to71172.524@compuserve.com .

People say to me:

But you know that we (TEX people) need these virtual fonts to cope with non-TEX fonts.

The key point is that this statement is just plain wrong!The fact is thatoneparticular implementation of a printer
driver (DVIPS) doesforce the user to use virtual fonts to do just about anything. This is a valid approach, but one
that requires the user to deal with more complexity than is really needed. It isnot reasonable to generalize from this
example to alldvi processors, based on the limitations of a particular implementation.

Why doesDVIPS need virtual fonts?
The need forVF in DVIPS is mostly a result of the fact that a companion utility (AFM2TFM) is unable to make proper
TFM files complete with ligatures and kerningwithout using virtual fonts (AFM2TFM also is unable to make TFM
files for math fonts).

In fact, youcanuseDVIPS without VF if you use a utility other thanAFM2TFM to make TFM files. For example,
some people buying Y&Y fonts for use withDVIPS use ready-made TFM files supplied with the fonts that do not
requireVF (or they runAFMtoTFM on a PC to make new TFM files for whatever encoding they desire).

A second reason for the forced use ofVF in DVIPS is the use of a somewhat contorted way of dealing with the
font encoding issue — three mappings instead of just one, see later. (We won’t even talk about the odd way this was
handled in old versions ofDVIPS).

CM and non-CM fonts can be used without virtual fonts
It is possible to use non-CM and CM fonts (TrueType, ‘PostScript’ Type 1, BitStream Speedo etc)without resorting
to virtual fonts, provided you have a driver that can do this (e.g. DVIPSONE anddvi Windo) and a companion utility
(AFMtoTFM) that can make proper TFM files complete with ligatures and kerningwithoutneedingVF.

By the way, the encoding issue is a very important and often misunderstood item. Since TEX thinks of characters
only in terms of numbers, and since the CM fonts have hard-wired encoding, many TEX users are unaware of what this
is all about. Someone always working with the same programs and on the same platform may not be aware that there
is an issue. But that is another story. Just keep in mind that a file containsnumeric codes— notcharacters. There must
be conventions for what glyph each numeric code corresponds to – and there is no single ‘right’ encoding.

It is not necessary to use virtual fonts to reencode a font.

Users of Y&Y software use scalable outline fontswithout VF. Y&Y doesn’t sell or support PK bitmapped fonts
(except in some half-baked way). So it should be obvious that ‘it works’ — for otherwise they would have been out of
business long ago!

reprinted from Baskerville Volume 4, Number 1

reprinted from Baskerville Volume 4, Number 1

One can use non-CM fonts — with full support for ligatures, kerningandreencoding – without resorting to virtual
fonts.

A large fraction of sales from Y&Y are to service bureaus, publishers, and TEX consultants — ‘power users’ that
need all the most advanced features. IfVF was needed to do any of the things they want to do, then you can bet that it
would be supported!

The need for font re-encoding and the inabillity ofVF to provide proper re-encoding
The most commonly claimed reason for need to useVF is that font encoding must be controlled. Now the virtual font
itself — like everything in TEX — treats characters merely asnumbers— it has no concept of character other than as
a number. HenceVF itself canonlypermute the numbers of from 0–255. That is, it can move characters around in the
space of integers from 0–255.

But: most fonts have many unencoded characters. There may be 224 or 500 or even over a thousand characters, yet
only 170 may show up in the ‘raw’ encoding of the font. To use the font properly it has to be re-encoded. There is
a ‘cmap’ or ‘encoding vector’ that maps the integers from 0–255 to characters (usually specified by some mnemonic
name like ‘space’). To use such a font properly, thedvi printer driver ordvi previewer has to be able to reencode the
font to a user specified encoding vector. Note that this has nothing to do with virtual fonts, it is a capability needed in
thedvi processor whether or not virtual fonts are supported — and in fact cannot be provided byVF itself.

To state this emphatically: virtual fonts themselves are inadequate for reencoding, since they cannot make
unencoded characters accessible. And once yourdvi processor has its own mechanism for doingreencoding,
there is no longer a need forVF to attempt to do this!

Let me show how easy this encoding business really can be. Imagine an ASCII file with a list of numbers and character
name pairs. This file contains up to 256 lines such as the following:

32 space
33 exclam
34 quotedbl
35 numbersign
...

This is an encoding vector file. It fully defines the encoding to be used — in a totally clear and explicit way. Now
such an encoding vector file can be used by thedvi processor (the user specifies for a font that needs reencoding,
which of these encoding vectors to use), as well as by the utility used to create the TFM metric file.

Compare this toDVIPS’s complex mechanism of ‘input encoding’, ‘output encoding’, plus virtual font remapping
(permuting 0–255).Three‘mappings’, where justoneis perfectly adequate!

If we don’t needVF for reencoding, then what are virtual fonts good for?
1. Making a fake smallcaps font;
2. Add new composite/accented characters;
3. Making new fonts that contain characters from two existing fonts;
4. Changing the side-bearings and advance widths of chacacters in a font;
5. Achieving weird and wonderful effects by packaging TEX dvi commands for drawing rules and\special s as

‘characters’

What are the drawbacks of using virtual fonts for these purposes?
1. The font designer will be in pain when he sees his creation mutated using virtual fonts to create fake smallcaps!

A smallcaps font should have properly designed ‘small caps letters’,not scaled replicas of the uppercase letters.
Making a smallcaps font this way is not quite as evil as making a bold font by smearing a regular face, but it comes
close. . . Admittedly, many fonts do not have companion ‘expert fonts’ or smallcaps versions, so one is tempted to
make up a fake smallcaps font, but its not a good idea.

2. Most text fonts contain 58 ‘standard’ accented/composite characters that cover ISO Latin 1 and some more. These
can be easily used directlyif your dvi driver provides for reencoding. CuriouslyDVIPS/AFM2TFM instead uses
the virtual font mechanism to compose the accented character from base and accent. This is not a good idea since
the designer of a quality font often makes a composite that is notexactlyachievable by superimposing base and
accent. Aring, Ccedilla, and ccedilla are particular cases of glyphs usuallynot made by superimposing base and
accent, but by designing an outline. Also, the rendering at some resolutions will not be as good, since the hinting for
the composite can take into account interactions between the base and accent. This isnot possible if the two parts
are drawn separately. (By the way,AFMtoTFM can be used to insert convenient pseudo ligatures for the accented
characters in the TFM file).

–14–

Do youreally need virtual fonts?

3. Combining parts of two fonts seems like a legitimate use for virtual fonts. It comes in handy, for example, when
an ‘expert font’ contains the small caps letters, but not the upper case letters. But see below.

So what are the drawbacks of using virtual fonts for these purposes (And how can one achieve the same results some
other way)?

The main problem is: OnlyTEX knows anything about virtual fonts.

Now if TEX is all you ever use,and if you don’t use text in your illustrations, then that may be just fine with you.
But in a lot of professional work, TEX does not live in isolation. Illustrations are created using graphics applications of
all sorts. These can be inserted into the text in EPSF or TIFF or other form. (Where we come to meet the nightmare of
non-standardization of\special – but that is another diatribe. . .)

Now if the illustration has any text in it, it is usually desirable to have the font used in the nomenclature match
the text font. So the graphic application has to be able to use the same fonts as TEX. Hence PK bitmapped fonts are
not useful, one needs to use fonts in some established industry standard form such as Type 1 or TrueType (note that
virtually all fonts commonly used with TEX are now available in T1 format, including CM, AMS, LATEX, SLITEXetc).
And this won’t work if the font is a ‘virtual font’. What to do?

Font manipulation tools
Well, in the TEX world we tend to be somewhat myopic. We try to do everything in TEX, or using tools that come with
TEX. Sometimes we go through amazing contortions to do this, even when it can be done quite easily some other way
(for example making graphs by drawing millions of dots in TEX rather than using PostScript).

Thereare tools available for manipulation fonts in Adobe Type 1 format. These createreal fonts that can be used
not just with TEX. Such tools can:

1. combine characters from different fonts into one font;
2. create new composite/accented characters (add ISO Latin 2 glyphs say);
3. make obliqued versions of a font (although the designer may not agree);
4. adjust the side-bearings and advance widths of characters;
5. and about a dozen other things. . .

It should be clear from the above that I have pretty strong feelings on this issue! But that is only to counter the pretty
strong feelings many users — particularly in the Unix / University world — have on this issue!

0.1 Easy, totally general reencoding
In dvi Windo andDVIPSONE you can useanyencoding (for printingand for on screen display), and using arbitrary
encoding is as simple as adding a line like

tir Times-Roman *remap* isolati1

to a ‘font substitution’ file — or, running a batch file called encode (this should all be one one line):

encode isolati1 c:\afm c:\tfm c:\psfonts
c:\windows W tir tii tib tibi

(the latter takes care of all four styles of Times-Roman). What could be simpler? This is not to say that it is easy to
implement this! In fact, the operating systems, PostScript printer drivers, Adobe Type Manager, and clone printers
conspire to actually make it very hard. But the user need not suffer!

MathTime version 1.1
Lets talk about the MathTime fonts for a second. It certainly saved some work to not have to make up the glyphs
for the letters in the math italic font MTMI, but instead to ‘borrow’ them from Times-Italic (with major changed in
side-bearings and advance widths). And virtual fonts make it possible to splice together RMTMI and Times-Italic to
make a MTMI font.

However, this has been the source of very many headaches! Virtual font fanatics please pay close attention!

First of all, there are eight (8) versions of true Adobe Times-Italic alone. And different printers have built in different
versions. For example, many TI printers use the old 001.002 version, while most QMS printers use the (almost) latest
version 001.007. So what you say? Well, while the advance widths of the characters have not changed since 001.002
(thank god), the glyph shapesandside-bearings have. Just for example, the lower case ‘z’ in 001.002 has a short flat
bottom right on the baseline, while the ‘z’ in 001.007 has a distinctive ‘swash’ bottom which descends way below the
baseline and comes much further over to the right where it ends in a bulb. Subscript position designed to work with
001.002 will cause collision when used with 001.007! Conversely, a subscript on ‘z’ will look too far away when used
with version 001.002, because the fonts were actually tuned for 001.007.

–15–

reprinted from Baskerville Volume 4, Number 1

We won’t even talk about ‘clones’ of Times, such as the one by BitStream, which are used in some low-cost laser
printers. These have entirely different ‘color’ for a start and different side-bearings and shapes.

And what about that Linotronic to which you have entrusted generation of the final copy of your book (at $3–$8
per page)? What version of Times-Italic is it using? Are you willing to risk it?

So what is the solution? Don’t use virtual fonts!
The IBM PC version of MathTime version 1.1 from Y&Y comes with true Adobe Times 001.007 and an installation

procedure that creates areal MTMI that (i) can be used with any application, not just TEX, and (ii) has ‘wired in’ the
version of Times-Italic for which RMTMI was designed. No ‘surprises’ are possible!

By the way, service bureaus are in the habit of asking for the fonts separately from the PostScript file (this is a hang
over from a bygone era, but that is another story). And they want areal font – their image setter doesn’t know anything
aboutvirtual fonts.

Unfortunately the tools for combining RMTMI and Times-Italic, adjusting side-bearings and advance widths etc
are quite sophisticated and not available on other platforms (particularly if you care about hinting, since most tools for
manipulating fonts destroy the hinting). So many users find themselves in the unfortunate position of having to buy
the IBM PC versionandutilities for converting from PC to Mac or Unix format.

Some remaining minor issues
There are some other, less important issues. Implementation ofVF in thedvi processor creates a significant perfor-
mance hit. The seriousness of this depends on the cleverness of the implementor, and for printer drivers its probably
not a big concern (since 300 milli-seconds per page is not noticably slower than 150 milli-seconds per page). The
performance hit indvi previewers is more serious. Try Textures with a file that calls forVF fonts versus the same
basic text with non-VF fonts (which gives up some of the advantages of the assembly language coding in Textures
1.6).

–16–

V Further thoughts on virtual fonts . . .

Yannis Haralambous

Yannis.Haralambous@univ-lille1.fr

In a paper I published in 1993 (“Virtual fonts: great fun, not for grand wizards only!”) I have already addressed
many of Berthold Horn’s arguments; nevertheless I would like to take the opportunity to respond a little further.

The basic argument of Horn is that PostScript drivers can reencode fonts, so that virtual fonts are unnecessary for
plain reencoding. This is certainly true, but unfortunatelyonly in a very limited scope.

To produce accented letters, many PostScript fonts contain “composite character data”: these are just translation
coordinates for character parts, which will be composed to produce the result. PostScript interpreters know about these
characters and can automatically take care of characters defined in that way in the font. But these accented characters
cover only the West European range (excluding of course Welsh and Maltese); a PostScript interpreter is not clever
enough to define a new composite character, for example, a ˙z as needed in Polish, or âw as needed in Welsh. Alan
Jeffrey’s utility can do this very easily; this is far more than just plain reencoding, but is everyday practice for virtual
fonts.

The reader may have little interest in exotic languages (like the Polish or Welsh in the previous paragraph); but DC
fonts have additional features which are implemented in virtual Cork-like PostScript fonts by Alan Jeffrey’s virtual
font creation tool:

• certain characters may need special kerning (such as the little zero for the perthousand sign, the German single and
double opening quotes etc.);
• some symbols (such as,§,£) may be missing; these can be taken from other fonts;
• the glyph ‘-’ is used twice: once for the text dash, and once for the hyphenation dash (cf. [5] why these are separate

characters); I doubt that reencoding can assign the same glyph to two different positions (?);
• the uppercase version of ß is made out of two ‘S’ letters; this is too much to ask for a poor PostScript interpreter. . .
• PostScript fonts can contain ligatures, but notsmart ligatures: if you want your Dutch ‘ë’ to become an ‘e’ at the

end of a line, you need a begin-of-word ligature, something trivial for TEX.

Virtual fonts are one of the most important aspects of the TEX system. This is not just the case for exotic situations;
I voluntarily do not speak of Arabic and other extremely important uses of virtual fonts in oriental languages; virtual
fonts are important for all of us Occidental language writers. A PostScript font has poor typographical properties (no
smart ligatures, restricted character composition, since you have to remain in the same font and the same size, etc.);
by the use of virtual fonts, TEX’s typographical possibilities can be added to the font: a virtual font structure makes a
PostScript font richer.

. . . It is not necessary to use virtual fonts to reencode a font. . .

True. But we want more than just re-encoding: word processors like Word or WordPerfect simply reencode fonts;
TEX can do more out of a PostScript font, and the proof can be found in the virtual fonts made by Alan Jeffrey’s utility.

Horn states that virtual fonts cannot make unencoded characters accessible. This is certainly true, and—as he says—
this issue is solely solved by reencoding of fonts. But it is not an argument against the use of virtual fonts: one can
always reencode a font into some universal encoding, for exampleISOLatin1 . The latter might be universal, but is
still not Cork. Some extra work must be done to make a Cork-like font out of it, and this is best handled by a virtual
font.

I agree that reencoding is the only way to make characters such as the Thorn or Eth appear; but it should be only
one step of the printing progress, between others.

. . . Making a fake smallcaps font. . . A smallcaps font should have properly designed small caps letters. . .

Horn isabsolutelyright when he says that one should rather adopt an ‘Expert’ font than faking small caps by scaling
regular caps. Now, suppose you buy that Expert font. What’s the next step? You will discover that Expert fonts do not
contain uppercase letters (cf. [1], page 602). Is there a possibility of merging the regular and expert fonts into what
we expect to be small-caps font, using plain reencoding? I’m afraid not, since reencoding means “assigning glyphs to
positions,insidea font” and not “betweenfonts”; you will have to use virtual fonts. Alan Jeffrey’s utility automatically
finds out if there is an expert font and what characters it contains. It then either creates fake small caps, or takes (just)

reprinted from Baskerville Volume 4, Number 1

reprinted from Baskerville Volume 4, Number 1

the real small caps from the expert font. Furthermore, there cannot possibly be any kerning pairs between small caps
and uppercase letters in the PostScript fonts since these are not contained in the same 256-characters table. But the
TEX virtual font can contain such kerning pairs (some of them, like TA or VA being quite important); after a little
experimenting the quality-conscious user will easily add the most important kerning pairs to the VPL file.

. . . Only TEX knows anything about virtual fonts. . .

Actually Horn is not saying “do not use virtual fonts”, but “do not use PK fonts”, since “they will never be able to
enter into illustrations”. He continues:

. . . Well, in the TEX world we tend to be somewhat myopic. Hence PK bitmapped fonts are not useful,
one needs to use fonts in some established industry standard form such as Type 1 or TrueType. . .

To my (myopic?) eyes the PostScript world seems much more myopic. For many years poor PostScript fonts
have been designed; in the meantime the TEX community kept saying “fonts without metaness are anti-typographic”
but (apart from a few exceptions, like Jacques André’s papers on pointsize dependent PostScript font code, cf. [2]
and [3]) metaness seemed to be tabou outside the TEX world; suddenly two years ago the goddess Adobe declared
that fonts without metaness are no good, and introduced a new object of veneration: Multiple Master fonts. These
are extremely complex and memory consuming, but still much poorer thanMETAFONT created fonts; nevertheless
(myopic) PostScript font users consider them as thenon plus ultra.

METAFONT can do things PostScript cannot even dream of. Try to adjust gray density of Hindi, Arabic and Latin
text on the same page with PostScript fonts. Horn says thatscaled small caps are fake small caps. I say: scaled fonts
are always faked:all PostScript fonts are faked when used in a size different that their design size(and most of the
time we don’t even know what that design size is; these are things the customer had better not find out. . .).

Erik-Jan Vens has developed a tool to convert PostScript fonts toMETAFONT. This opens new horizons to digital
typography, since we can manipulate these fonts usingMETAFONT tools. DVI drivers which do not read PK files will
never take advantage of these methods (cf. [6]).

. . . (note that virtually all fonts commonly used with TEX are now available in Type1 format, including CM,
AMS etc.. . .

But I would add the word ‘obsolete’ after ‘CM’: IMHO, CM fonts arejust good enough to write English. It is quite
an irony that the text you are reading this very moment is written in English5, but here in Europe hundreds of millions
of people communicate through other languages, which cannot be hyphenated with CM fonts (cf. [4]). Of course,
nobody will ever force the only-English-writing-TEX-user to use DC fonts, but can progress be stopped?

Finally, Horn omits a very important issue: there is a tool called DVICopy (written by Peter Breitenlohner). Using
DVICopy one cande-virtualizea document, that isreplace characters from a virtual font by the real character(s)
they represent. This eliminates all communication problems: suppose I have created a document using a PostScript
font, which itself is encoded in some standard encoding. For this I have used a virtual font, which my correspondant
might not necessarily have By devirtualizing my DVI file, I obtain a new DVI file which uses precisely and exclusively
the real font on which my virtual font was based. In the case of PostScript fonts, this means that if my virtual fonts
were constructed upon Adobe Standard encoded PostScript fonts (that’s the usual encoding for PostScript fonts) a
de-virtualized DVI file will contain references to these original PostScript fonts only, which makes it as portable as a
DVI file can be.

I would like to close this paper by some general remarks on the “TEX world”, as I see it: I don’t believe TEX
users are myopic or isolated from the rest of the world. On the contrary, they see problems that commercial programs
can barely handle, and solve them through TEX without even making much noise about it. In the last few years it
has happened that there has been much more development in public domain TEXware, than in commercial software
around TEX. Important innovations have always appeared first in public domain software6. Many times commercial
software has adopted those innovations; but there are also many TEX features yet undiscovered by the commercial
world—and many commercial products still at the stone age of TEX. This is a sad consequence of the fact that TEX is
a public domain program, whose “official” development has stopped, and has been unofficially taken over by mostly
unorganized volunteers: this makes both the charm and the pain of TEX history. Virtual fonts may be one of the
innovations that all commercial products haven’t adopted yet—or maybe not; but we should think twice before giving

5Bien que j’aurais pu changer de langue à tout instant ; si j’écris en anglais ce n’est pas pour la gloire de la langue mais pour faciliter la lecture
au lecteur britannique. Passons. . .

6With a single exception: the user interface. Public domain software is never as user-friendly as commercial ones.

–18–

Colour slides with LATEX andseminar

away virtual fonts in exchange for something poorer (PostScript font reencoding), when we can equally well use both
at the same time, and produce even better results.

References

[1] Adobe Systems International, PostScript Language Reference Manual, second edition, Addison Wesley, 1990.
[2] Jacques André, ‘Adapting Character Shape to Point Size’,PostScript Review, April 1991.
[3] Jacques André and Irène Vatton, ‘Contextual Typesetting of Mathematical Symbols—Taking Care of Optical Scaling’, sub-

mitted toElectronic Publishing, 1993.
[4] Yannis Haralambous, ‘TEX conventions concerning languages’,TEX and TUG News, Volume 1, Number 4, 1992.
[5] Yannis Haralambous, ‘Virtual Fonts: Great Fun, not for Wizards Only’,Minutes and APendiceS93.1, Nederlandstalige TEX

Gebruikersgroep, 1993.
[6] Yannis Haralambous, ‘Parameterization of PostScript fonts throughMETAFONT — an alternative to Adobe’s multiple-

master fonts’, to appear inProceedings of Raster Imaging and Digital Typography, Darmstadt 1994.

–19–

VI Colour slides with LATEX and seminar

Michel Goossens (CERN)

Sebastian Rahtz (ArchaeoInformatica)

1 Slides and LATEX

Many LATEX users want to take advantage of TEX’s high-quality typesetting when they produce overhead slides for a
presentation. This facility was originally provided by a separate package, SLITEX, but that had a number of disadvan-
tages:

• it was limited to a set of specially-scaled Computer Modern fonts and it was not easy to adapt to other fonts;
• the user was required to have two separate files, one for control information and the other for the actual slides;
• the control of colour and overlays was limited and crude;
• There was only one ‘style’ for slides, and writing a different layout (to, say, put a logo on each slide) was not

documented.

LATEX users now have a variety of fonts, and vast numbers of styles, to choose from, but SLITEX has lagged behind.
When LATEX 2ε was released at the end of 1993, this included a simple LATEX document class (already available in
the New Font Selection Scheme, version 2) to emulate SLITEX without the overhead of a separate macro package.
However, there is a much better LATEX package which has been available for some time now—seminar ; if used in
conjunction with a PostScript printer, and a set of useful macros called PSTricks,7 this offers almost every imaginable
facility, including:

☞ Fancy frames, headers and footers;
☞ Landscape and portrait slides in the same document;
☞ Coloured text and tables;
☞ Interleaving of annotations and slides;
☞ Slide ‘chapters’ and list of slides;
☞ Overlays.

seminar is a normal LATEX package which can be used with almost all other LATEX packages (such as those to
change font, include graphics etc). Its main job is to produce transparencies, but it can also make accompanying notes
from the same file. It is compatible withAM S -LATEX and LATEX 2ε.

2 Using theseminar style

Usage is simple; begin your document in the normal way8 with

\documentclass{seminar}

The slide environments are

\begin{slide}
...

\end{slide}

\begin{slide*}
...

\end{slide*}

Whereslide is for landscape slides andslide* is for portrait slides. By default, the document is typeset in
landscapemode, but if you include theportrait package option, the document is typeset in portrait mode.Type-
settingthe document in landscape mode is different fromprinting it in landscape mode; you have to worry about

7Theseminar package and PSTricks are the work of Timothy van Zandt (tvz@princeton.edu).
8We are assuming LATEX 2ε here, just to remind you to upgrade.

reprinted from Baskerville Volume 4, Number 1

Colour slides with LATEX andseminar

the orientation of the page when printing, but withdvips this is simple, and taken care of in the local control file
described below.

So the default output9 from this input:

\documentclass{seminar}
\usepackage{times}
\begin{document}
\begin{slide}
My talk is about:
\begin{description}
\item[Cats] Nice furry creatures

which belong in every good home;
\item[Dogs] Nasty barking things

which bite you;
\item[Snakes] They come slithering

through the grass and \emph{have
no feet}; this is most disturbing;

\item[Rhinoceroses] {\bfseries Never}
be rude to a rhino; they are bigger
than you, and meaner.

\end{description}
\end{slide}
\end{document}

will look like:

My talk is about:

Cats Nice furry creatures which should have a place in every good

home

Dogs Nasty barking things which bite you;

Snakes They come slithering through the grass andhave no feet; this

is most disturbing;

Rhinoceroses Neverbe rude to a rhino; they are bigger than you, and

meaner.

1

Most slides will be no more complicated than this, using standard LATEX environments likeitemize , enumerate
andtabular .

3 Frame styles

A variety of slide framing styles are available, set with the\framestyle command; the following are some of the
predefined ones (some assume you have a PostScript printer), using the\slideframe command:

none

On the fifth day of Christmas, my true love gave

to me:

1. Five overfull hboxes

2. Four fontdimens missing

3. Three nested endgroups

4. Two undefined commands

5. . . .and a token in TEX’s stomach

1

9We have added a package “times ” so that the output will reduce properly to thumbnails for this article.

–21–

reprinted from Baskerville Volume 4, Number 1

shadow

On the fifth day of Christmas, my true love gave

to me:

1. Five overfull hboxes

2. Four fontdimens missing

3. Three nested endgroups

4. Two undefined commands

5. . . .and a token in TEX’s stomach

1

double

On the fifth day of Christmas, my true love gave

to me:

1. Five overfull hboxes

2. Four fontdimens missing

3. Three nested endgroups

4. Two undefined commands

5. . . .and a token in TEX’s stomach

1

oval

'

&

$

%

On the fifth day of Christmas, my true love gave

to me:

1. Five overfull hboxes

2. Four fontdimens missing

3. Three nested endgroups

4. Two undefined commands

5. . . .and a token in TEX’s stomach

1

Similarly, a variety of page styles (the headers and footers) are available with the\pagestyle command, such
as:

empty

On the fifth day of Christmas, my true love gave

to me:

1. Five overfull hboxes

2. Four fontdimens missing

3. Three nested endgroups

4. Two undefined commands

5. . . .and a token in TEX’s stomach

plain

On the fifth day of Christmas, my true love gave

to me:

1. Five overfull hboxes

2. Four fontdimens missing

3. Three nested endgroups

4. Two undefined commands

5. . . .and a token in TEX’s stomach

1

–22–

Colour slides with LATEX andseminar

align

1 +

On the fifth day of Christmas, my true love gave

to me:

1. Five overfull hboxes

2. Four fontdimens missing

3. Three nested endgroups

4. Two undefined commands

5. . . .and a token in TEX’s stomach

+ +

Both slide frames and page styles can be customized; for instance, the examples in this paper (e.g. Figure 1) are
suitable for use at CERN.

4 Interleaving notes, and selecting subsets

It is easy to intersperse your slides with notes to yourself; these can be simply placed between theslide environments
or enclosed in a specificnote environment. You can use any LATEX commands in these notes, and include your whole
article here if desired. When you want to print the slides, a variety of package options can be used:

slidesonly Only the slides are printed;
notesonly Only the slides are printed;
notes The slides are interleaved with the notes;
article The document notes are typeset like a normal LATEX paper, and the slides are placed as figures (reduced to half

size).

The\slideplacement command can be used to affect how slides are placed in thearticle format; the possible
parameters are:

float (default) Slides are floated
float* Slides are floated, but if two column format is chosen they will span both columns
here Slides are placed where they occur in the notes

Further detailed control of the interaction between slides and notes is given in theUser’s Manual.
Selected slides can be included or excluded with the\onlyslides or \noteslides commands which a pa-

rameter of a comma-separated list of slides; this can be numbers, ranges (e.g. 5–10) or LATEX \ref commands
referring to\label commands in the slides.

5 Control over slide size, fonts and magnification

There are a great number of parameters by which the user can change any of the following either on a slide-by-slide
basis, or for the whole document:

• Slide height and width;
• Top, bottom, left and right margins;
• Text justification (it is ragged right by default);
• Page breaking by varying tolerance of over-running material;
• Inter-line spacing;
• Point size, and choice of fonts.

How to change the default settings is explained in detail in theUser’s Guide.
Becauseseminar works by magnifying pages, sophisticated users should read the manual to see how to deal with

setting and changing TEX dimensions. Most users need not worry about this—in commands like\epsfig you should
always express your ‘width’ and ‘height’ requests in fractions of the line size anyway.

6 Advanced use: customing theseminar control file

The seminar package always starts by trying to find a file calledseminar.con on theTEXINPUTSpath; this
gives the user or site an opportunity to conveniently customize the defaults. Theseminar.con file can contain any
LATEX commands, including inputting style files. Our figures were typeset using aseminar.con set up for CERN;
the contents of this are given below, with explanation of what is being done. It also shows how higher-level functions
can be added which the average user would not want to program for themselves.

First, we set up landscape macros for thedvips driver.

–23–

reprinted from Baskerville Volume 4, Number 1

1

CERN

Colour slides with LATEX and seminar.sty

Sebastian Rahtz

October 1993

The ‘seminar’ package and PStricks are the work of Timothy van Zandt

(tvz@princeton.edu), and the full source and documentation can be

obtained from CTAN archives.

January 28, 1994 Introduction/1

Slides and LATEX 3

CERN

Slides and LATEX

Many LATEX users want to take advantage of TEX’s high-quality

typesetting when they produce overhead slides for a presentation.

This facility was originally provided by a separate package, SLITEX,

but that had a number of disadvantages:

• it was limited to a set of specially-scaled Computer Modern fonts

and it was not easy to adapt to other fonts;

• the user was required to have two separate files, one for control

information and the other for the actual slides;

• the control of colour and overlays was crude and limited;

• There was only one ‘style’ for slides, and writing a different

layout (to, say, put a logo on each slide) was not documented.

January 16, 1994 Introduction/3

\SlideColours{Red}{Yellow} \SlideColours{Black}{White}
Introducing ‘seminar’ 4

CERN

Introducing ‘seminar’

There is a much better LATEX style file available now –seminar.sty; if

used in conjunction with a PostScript printer, and a set of useful

macros called PStricks, this offers almost every imaginable facility,

including:

• Fancy frames, headers and footers

• Coloured text and tables

• Interleaving of annotations and slides

• Slide ‘chapters’ and list of slides

January 16, 1994 Introduction/4

Normal slide with coloured background and text 5

CERN

Normal slide with coloured background and text

The Urban Origins in Eastern Africa project:

1. Ran from 1987 to 1993, under the sponsorship of the Swedish

development agency, SAREC and the overall management of

Paul Sinclair at Uppsala.

2. To provide a framework of research and training for

archaeologists in the Comoros, Botswana, Kenya, Madagascar,

Mozambique, Namibia, Somalia, Tanzania, and Zimbabwe.

3. Interdisciplinary and international co-operation has resulted in a

dramatic increase in the range and scale of basic data from the

countries involved.

January 16, 1994 Introduction/5

\SlideColours{White}{Blue} Red on gradient White/JungleGreen

Figure 1. Colour in slide background and foreground: (simulated with grey levels)

\newcommand{\printlandscape}{%
\special{papersize=297mm,210mm}}

We will assume PostScript printers, and gain nice PostScript effects like rounded box corners; these will need some
extra style files:

\input semcolor.sty
\input fancybox.sty

For slide ‘sections’, list of contents, we use another style file:

\input slidesec.sty

This allows us to use various commands, some of which are used below. We can also produce list of slides, in two
layouts:

–24–

Colour slides with LATEX andseminar

\listofslides \Slidecontents
2

CERN

List of Slides

Introduction

3 Slides and LATEX

4 Introducing ‘seminar’

5 Normal slide with coloured background

and text

Frame styles

6 Frame styles

Text colours and colour tables

8 Text colors

9 Colour tests

10 A multi-page coloured table

11 Z schemas built up with overlays

January 16, 1994 Introduction/2

Frame styles 7

CERN

Introduction
√ • Slides and LATEX 3
√ • Introducing ‘seminar’ . . . 4
√ • Normal slide with coloured

background and text. . . . 5

Frame styles
√ • Frame styles. 6

Text colours and colour tables

⇒ • Text colors 8

• Colour tests 9

• A multi-page coloured table 10

• Z schemas built up with over-
lays 11

January 16, 1994 Frame styles/2

For slide headings, there is a predefined\slideheading command; we will amend this so that it is typeset with a
‘shadow’. Theslidechapter command is also defined (the code is not given here) which allows the user to break
the slides into groups; the slide chapter title will be given in the bottom right corner with this CERN style.

\def\@empty{}
\renewcommand{\makeslideheading}[1]{%

\gdef\theslideheading{#1}%
\def\@tempa{#1}%
\ifx\@tempa\@empty\else

\begin{Sbox}
\begin{Bcenter}

\large\bfseries#1
\end{Bcenter}

\end{Sbox}
\centerline{\shadowbox{\TheSbox}}

\vspace{1ex minus 1ex}
\fi

}

Now the CERN page and frame styles; the plain ‘cern’ style just places registration ‘+’ marks, and the date:

\newpagestyle{cern}%
{{\color{Black}\small

{\bfseries +} \hfil \today
\hfil {\bfseries+}}}%

{{\color{Black}\small
{\bfseries +} \hfil \thepage
\hfil {\bfseries+}}}%

Whereas the ‘cernsections’ style has section headings and a logo:

\newpagestyle{cernsections}%
{{\color{Black}\small

\raisebox{-.5cm}[0cm][0cm]{%
\epsfig{figure=cernlogo.ps,height=.8cm}}
\hfil {\bfseries\theslideheading} \hfil

{\bfseries\thepage} }}%
{{\small\color{Black}\today

\hfil \thechapterheading /\inchap }}%

For the slide frames, we define a frame with the word “CERN” set in a coloured box on the lower left; this is done

–25–

reprinted from Baskerville Volume 4, Number 1

using the PSTricks macros (which are automatically included by the ‘semcolor’ option above). The colour commands
are those predefined indvips ’s color.pro header file:

\newslideframe{cern}{{\SlideFront
\boxput(-0.7,-1.11){\psframebox%
[linecolor=black,fillcolor=ForestGreen,
fillstyle=solid]{\hbox{{\normalsize
\sffamily\color{Black}CERN}}}}{#1}%
\color{Black}}}

Finally we make sure that each slide starts with the current foreground colour.

\def\everyslide{\SlideFront}
\def\theslideheading{}

The user uses the command\SlideColours , with two parameters, which are colour names for foreground and
background. A synonym is defined for black on white. We have to be a bit careful defining the frame border, because
by default it is coloured using the POSTSCRIPT ‘setgray’ operator, and that might not work with the colour separation,
so we define an explicit blue frame (for variety).

\newslideframe{blueframe}[%
\psset{linecolor=NavyBlue,%

linewidth=\slideframewidth,%
framesep=\slideframesep,%
cornersize=absolute,%
linearc=.5cm%

}]{\psframebox{#1}}
\def\SlideColours#1#2{%

\gdef\SlideFront{\color{#1}}%
\slideframe{\Framedefault}%
\slideframe*[\psset{fillcolor=#2,%
fillstyle=solid}]{blueframe}%

}
\def\SlideColours#1#2{%

\gdef\SlideFront{\color{#1}}%
\slideframe{\Framedefault}%
\slideframe*%

[\psset{linecolor=Black,%
fillcolor=#2,fillstyle=solid}]%

{scplain}%
}

\def\blackandwhite{\SlideColours{Black}{White}}

The slide defaults will be for a detailed layout and CERN logo, with yellow writing on a blue background:

\pagestyle{cernsections}
\slideframe{cern}
\def\Framedefault{cern}
\SlideColours{Yellow}{RoyalBlue}

–26–

VII Back(s)lash

Jonathan Fine

J.Fine@uk.ac.cam.pmms

Welcome to the first of a series of columns devoted to the subtleties of programming TEX. The focus will be on
the primitive commands and low-level features of TEX. This column is devoted to\csname and to avoiding its side
effects.

The reader might do well to begin by turning to [40]. (This means page 40 ofThe TEXbook). Exercise 7.7 on that
page, and its solution, describe a\ifundefined macro. This macro has three shortcomings. The first is that
\ifundefined{relax}

will come out to be true! The second is that
\ifundefined{xyz}

will define \xyz to be\relax , if \xyz is not defined. This is often not what is wanted. The third problem is that the
process of defining\xyz will, if done within a group, add an item to the save stack [301]. This can cause problems in
processing LATEX documents which have a lot of cross-references.

To see this, we will use introduce a macro
\def\typeshow #1%
{%

\immediate\write 16
{> \string #1 = \meaning #1.}%

}%

which will log the meaning of a token for us.
Here are two extracts from a.log file, which record its interactive use.

*{\expandafter\typeshow\csname xyz\endcsname}
> \xyz = \relax.

Notice the braces to confine the redefinition of\xyz to a group. This next example shows that\xyz really is
*\typeshow\xyz
> \xyz = undefined.

undefined.
When\csname is performed within a group, any (local) assignment it might perform will be restored when the

group ends. If we can end the groupbeforethe\typeshow is called, then we will get the orginal, undefined, meaning.
Here is how to do it.
\begingroup

\expandafter
\endgroup
\expandafter
\typeshow
\csname xyz\endcsname

The group will begin. The\expandafter s will have\csname brought into operation. When the\endcsname
is reached, execution passes to the token after the first\expandafter , which is the\endgroup . This restores the
value of\xyz . Now \typeshow gets the token\xyz , with the meaning ofundefined .

Here is a lightly edited version of the log file for the above code, entered interactively, with elaborations on the
previous comments interspersed.
*\begingroup
{\begingroup}

Here the first line is entered, and acted upon.
* \expandafter
{\expandafter}

reprinted from Baskerville Volume 4, Number 1

reprinted from Baskerville Volume 4, Number 1

The primitive (and expandable) command\expandafter is now being processed. It looks for the next token,

*\endgroup

here it is, and then expands the one after, which is

*\expandafter
{\expandafter}

which will again cause for a token to be read

*\typeshow

here it is, and the one after is

*\csname xyz\endcsname
{\csname}

which is now executed. It will form a control sequence\xyz . Execution now passes to the token after the first
\expandafter , which is:

{\endgroup}
{restoring \xyz=undefined}

andthis has the desired effect of restoring the original value. The rest proceeds as before

\typeshow #1->\immediate \write 16
{> \string #1 = \meaning #1.}

#1<-\xyz
> \xyz = undefined.

which is what we want.
Exercise 1.Obtain the same effect, but by using\aftergroup to export the token\xyz out of the group. Discuss
the relative merits of the two methods.
Exercise 2.Write a macro which tests as to whether (the meaning of) a token is expandable. Consult [212–215].

–28–

VIII Topical tip: Numbering theorems and corollaries in LATEX

R. A. Bailey

Goldsmiths’ College, University of London

Question 1 We Mathematicians can’t use LATEX. We need to be able to choose how to label our theorems. For example,
I like to have my important theorems numbered in a sequence Theorem A, Theorem B and so on, and the less important
theorems numbered Theorem 1, Theorem 2 and so on. You can’t do that in LATEX.

Answer Oh yes you can, and using nothing more than you can find inLATEX: A Document Preparation Systemby
Leslie Lamport, hereafter calledThe Manual.

Pages 58–59 ofThe Manualshow how to set up a simple theorem environment. The command

\newtheorem{thm}{Theorem}

creates an environment calledthm . Then each use of this environment produces something whose heading isThe-
orem. It is true that these theorems are numbered 1, 2, 3, etc. To obtain something numbered A, B, C, etc., use the
numbering commands given on page 92 ofThe Manual. Thus

\newtheorem{main}{Theorem}
\renewcommand{\themain}{\Alph{main}}

creates an environment calledmain whose heading is alsoTheorem but whose instances are numbered A, B,
. . . . Cross-references work correctly too: if you label the thirdmain with \label{mmm} and refer to it with
Theorem~\ref{mmm} then it will be called Theorem C.

Question 2 Journal editors are so fussy. They all want me to number my corollaries in different ways. The first wants
corollaries numbered in the same sequence as theorems; the second wants them numbered in a separate sequence of
their own; the third wants the corollaries after Theorem 7 to be numbered Corollary 7.1, Corollary 7.2, etc.; while the
fourth also wants the corollaries to start renumbering after each theorem, but wants the corollaries after Theorem 7 to
be numbered Corollary 1, Corollary 2 etc. How do I do all of this?

Answer It is not hard to do these things, because LATEX is provided with thenewtheorem command. I shall assume
that you have defined an environmentthm as in the answer to Question 1. The instructions on pages 58–59 ofThe
Manualshow us how to satisfy the first three editors. For the first, put

\newtheorem{cor}[thm]{Corollary}

and you will get an environment calledcor whose instances are calledCorollary numbered in the same sequence as
the theorems. For the second, put

\newtheorem{cor}{Corollary}

and for the third put

\newtheorem{cor}{Corollary}[thm]

For the fourth editor, we need the extra information from page 92. The third command above makes thecor counter
start again after eachthm , but it causes the Corollary number to be printed as, say, 7.1 rather than 1. We can cure this
by putting

\newtheorem{cor}{Corollary}[thm]
\renewcommand{\thecor}{\arabic{cor}}

In each of the four cases you get an environment calledcor whose instances are calledCorollary . Only the system
of numbering is different.

You should now be able to work out how to make the corollaries after Theorem 5 come out as Corollary 5a,
Corollary 5b, and so on.

reprinted from Baskerville Volume 4, Number 1

IX Malcolm’s Gleanings

Malcolm Clark

cudax@uk.ac.warwick.csv

0.1 Book review
Computers and Typography‘compiled by’ Rosemary Sassoon, Intellect, Oxford, 1993, 208pp, ISBN 1-871516-23-4.

On the title page of this book, the compiler notes that the customary words “edited by” were omitted at her request.
She goes on to say that the book is “an example of what this is all in aid of—typographic excellence in the computer
age”. A bold claim, and an interesting inference that typographic excellence is not the customary bedfellow of com-
puter ‘mediated’ books. As if to underline the typographic excellence, the title page faces a reproduction of a page
from Aldus Manutius’Hypnerotomachia Poliphiliof 1499.

Before looking at whether these claims are justified, what of the content? For whom is the book intended? The cover
suggests that it is invaluable for “all concerned with teaching, design or who produce documents of all kinds”. In the
preface, Sassoon suggests that the purpose is to bridge the gap between the computer people and the typography people,
but mainly to raise the awareness of letterforms and layout, rather than to educate those in the typographic world to
the appropriate use of computers. It seeks therefore to educate the computer user to a higher level of understanding of
‘typography’, however widely defined.

The book is organised into five parts: each part contains two or three contributions. Part 1 covers ‘Spacing and
layout’: the contribution by Gunnlaugur Se Briem,Introduction to text massage, illustrates one recurrent difficulty
in the book—typographers and designers tend to be aware only of the desk top publishing end of computer-assisted
typography. His recommendation to search and replace the ligatured letters is a shade risible, though on the whole
his advice is sound. But how practical is it to look at each line ending to check hyphenation, lift the baseline to
adjust parentheses (sometimes), fiddle with the leading, and so on. Should we not be looking for better models of
line and page make up which recognise the potential problems and solve them for us? Did every jobbing printer
take this much care? James Hartley (The layout of computer-based text) examines some aspects of layout, starting
with a questionnaire, and going on to more general matters of the distribution of space, and how it can be used to
enhance content. It is indeed true that the use of white space is poorly appreciated by many: that increased use of
white space might make something more useful (and less wasteful) is not a concept readily grasped, until some useful
and pertinent examples like these are thrust under people’s noses. Richard Southall’sPresentation rules and rules
of composition in the formatting of complex textis a highly literate explanation which draws together the views of
‘traditional’ typographers from Moxon, Fournier, Brun, De Vinne and Tschichold in order to show how their ‘rules’
may, or may not be applied in computer based composition systems. Southall’s in-depth knowledge of the working
of TEX and LATEX gives him a unique position, and he develops some rather telling criticisms. His remarks are more
generally applicable and help to provide a useful set of criteria for the assessment of computer based systems.

In Part 2,Typographic choices—Latin and other alphabets, Ari Davidow examines some of the problems facing
the typesetting of Hebrew (Digital hebrew in a monolingual world). This is an anecdotal discussion, with a few
interesting points. Its description of computer software (almost all Macintosh based) is a snapshot already out of
date. He is concerned solely withwysiwygtype input. The observation that italic or slanted letter forms in Hebrew
are seldom satisfactory is worth hearing, although perhaps diminished slightly by the illustration which was inserted
upside down. Elwyn and Michael Blacker,Spoiled for choice, have little to say about other alphabets, but something
to say about computer typography, and, more important, about some of the typographic choices that were made in
creating this book. At least they believe that fine typography is attainable with computer technology (albeit “in the
hands of a skilled designer with mastery of the optical considerations”, faint encouragement for the LATEX enthusiast).
And then they mention some of the design considerations and problems they faced with the book. They also comment
on their use of Bembo, with additional characters chosen from the expert font. The use of the expert Bembo font is
perplexing. Although chosen in part because it has small capitals, these seem very thin and weedy to me, as if they
have been simply optically scaled from the ‘normal’ capital. Examination of the book suggests that this, and their
“detailed checking of a proof” may have been in the realm of good intentions rather than solid achievement.

Part 3,More technical issues involved in type designcontains two papers. The first isSome aspects of the effects of

reprinted from Baskerville Volume 4, Number 1

Malcolm’s Gleanings

technology on type designby Mike Daines, which concentrates on the advantages which Peter Karow’s Ikarus system
has had on digital type. He also brings in many of the other potential tools available, especially those for the Macintosh.
Another useful and considered paper by Richard Southall,Character description techniques in type manufacture, looks
at two traditional (i.e. non-electronic) methods of the production of type, and two digital techniques. The objective here
is to identify the strengths and weaknesses of the changing technologies, and the areas in which they are most (or least
appropriate). From his description of the processes involved, Southall develops a ‘systematic view’ of the manufacture
of type. This has the merit of providing a plausible model which we can use, and may give the basis for some qualitative
comparisons. Actually, by the end of this paper I am left surprised that any acceptable typefaces were ever produced
in any technology, given the inherent problems at each stage.

The penultimate section,Lessons to be learned from the history of typographyincludes what I found to be one of
the most demanding papers, balanced by one which I found agreeably optimistic. Fernand Baudin’sEducation in the
making and shaping of written wordsis a polemic, and although it traces an argument going back to the days of Villon,
and emphasises the importance of handwriting (along the way consigning Marshall McLuhan to one of the outer hells),
I was left unclear how the final conclusion was derived from the route and its many byways. But one useful point which
is reiterated is that the study of type must not be to the exclusion of the study of space. A consensus is appearing. Alan
Marshall’s contribution,A typographer by any other namecame as a welcome relief after this fundamentalism. He
puts many of the problems in perspective, and provides a thankfully optimistic conclusion, which seems both balanced
and realistic. He appreciates that all major technological changes have their problems, that they start with a period of
emulation, and then innovation—there are repeated examples in the printing industry. His observation that Orwell had
argued that the advent of Penguin’s paperbacks all but signalled the end of civilization as we know it helps place in
perspective similar contemporary claims of an apocalyptic nature. Perhaps most telling, he suggests that the pool of
typographic knowledge is not limited, but is expanding, encouraged by the technologies becoming available.

The last section,Research and the perception of type, I found difficult to integrate with the stated objectives of the
text. Rosemary Sassoon’s own contribution,Through the eyes of a child—perception and type design, is an account of
designing a typeface which would aid children learning to read. Some of her observations on legibility are interesting
and intriguing, but they are hard to relate to computer in general, or the more specific needs of computer aided publish-
ing for a wide market. For educationalists and teachers there is probably much here. Perhaps not surprisingly, she also
makes a plea for handwriting. The final paper is daunting. Roger Watt, inThe visual analysis of pages of text, describes
some experiments the visual perception of printed pages. He analyses the same text with different inter word and inter
line spacing. The technique of analysis is claimed to have some reasonable closeness to the way in which the human
visual system works. In this analysis he identifies a number of different perceived ‘structures’, which he then relates
to the specifics of the text, like sentence breaks, rivers, words, inter line space and so on. Perhaps contrary to received
wisdom, he suggests that rivers may be useful, as landmarks for navigation in a text. The result is the conclusion that it
should be possible to specify the ‘riveriness’ and ‘wordiness’ desired (the visual effect), and then find the appropriate
word and line spacing. This seems a little radical, and the views of some typographers on this could be interesting.
Clearly it is appropriate to attempt to bring in a more physiological appreciation of how type is understood, rather than
the typographers’ often hand waving generalisations, but this is not a straightforward paper. It is not clear how far the
conclusions may be generalised, either to english texts in general, or to texts in other languages, where word length,
and the distribution of ascenders and descenders may be quite different. How it would generalise to non-Latin texts is
another mystery, or, as academics say “more work needs to be done”.

There is the feeling that some contributors view the changes as a shock to the system, whilst others know it has
all happened before, and that while some things will deteriorate, new possibilities will arise, and things will become
possible about which we have not yet dreamed. The curious appeals to handwriting as the basis of success have a very
luddite ring to my ears.

One of the factors which worried me about the book was the extent to which it achieved its aim as a “model of good
typographic practices”. Frankly, it lacks consistency, and there are far too many typos. Perhaps the erratic application
of a house style is one thing, but mistakes are something more serious. These blemishes and inconsistencies highlight
a notable omission from the book: discussion on the real difference between markup systems and those which demand
that the text be dealt with interactively—i.e. awysiwygsystem. Many of the small problems of style can be more easily
resolved through markup systems. If the goal is to produce something which is even, markup can ensure that the rules
are carried out remorselessly each time, while the use of more ‘flexible’ systems actually requires much more thought
and discipline right through the book production.

Unless this volume had been presented as some model for the typographically unkempt, it would not be appropriate
to pick up on the small faults, but sadly, it does seem to fall into the same pit in which it sees others. On the other hand,

–31–

reprinted from Baskerville Volume 4, Number 1

the overall design of the book is pleasing. Even the very ragged right works quite well (especially when hyphenation
is all but suppressed), and the wide central margins are used quite intelligently as a location for captions to figures. It
is obvious that the book was designed ‘spread by spread’, allowing for what the reader actually sees. The interplay of
white space is attractive.

It is not a book for novices; nor is it a book for power users. It falls awkwardly between a number of stools. Taken
individually, the papers are interesting, stimulating, and often provocative. But taken as a whole I just cannot discern
the linking thread, or the theme which binds it into more than a book of loosely connected essays. It veers from the
general, or at least broad, to the very specific, from which something more can be inferred. Placing these side by side
gives a very uneven intellectual feel to the whole thing. It feels as if Sassoon asked some of her friends to contribute
something to a book on typography and computers, without specifying the aim too tightly, and lo! we have the results
in our hands. The central concern of the book still worries me. Sassoon says that she hopes people will “never again
be satisfied with second best”. Elsewhere in the book are appeals to “fine typography”. I would have preferred to see
an appeal to “fitness for purpose”.

This review is based on one which appears in theInformation design journal, vol 7, no 2, 1993, p161–6

0.2 Information design journal
One of the curses of the (LA)TEX world is that many proponents become infected with a thirst for matters typographic.
It’s an odd affliction, since many of the victims have a scientific/technical background, and the way education seems
to be set up in many countries is based on the belief that science and technology are antithetical to anything aesthetic.
And typography is largely an aesthetic medium—or is presented as such. How do we acquire knowledge and satisfy
the hunger of our desire? There are a few books around (in my view one of the best is Ruari McLean’sTypography),
but precious few journals. A few designerly magazines exist (I like XYZ) but they do tend to be a little elitist and
introspective. What is there for those of us accustomed to reading ‘academic’ journals. I’ve yet to see a copy ofVisible
Language, although Knuth has published there from time to time. I’ve at last found something interesting, appropriate
and local –Information design journal. It’s not really just typography, but there is much in it which is typographical.

Thecall for papersdescribes the readership as multidisciplinary and that contributions are welcomed on a range
of topics related to the communication of information of social, technical and educational significance. Looking over
the last four issues, I note an interest in forms design (both questionnaires and bills: this is also one of my interests—
it fascinates me that it is so difficult to design satisfactory forms), in information signing (like directions, maps), in
information symbols (like those ISO symbols for almost anything, most of which I find odd and misleading – this is
quite distressing for icon based computer systems. . .). There also seems to be a wish to test comparisons—in other
words, to test hypotheses rather than make hand waving generalisations. But there are other articles which aim to
convince by qualitative argument.

The range of papers in each issue is broad too; not just in content, but also in style. In a sense each issue becomes
more informal as you read through it. The key articles are refereed, as one would hope, but there are reviews of one
sort or another. Somehow it achieves a pleasant balance between rigour and informality. I therefore commend it to you
as a useful journal to read and browse through. For more information, contact Fred Eade, Idj subscriptions, PO Box
1978, Gerrards Cross, Bucks, SL9 9BT.

1 Nonsense

The major event in the TEX world over the last few weeks (nay, months) must be the test release of LATEX 2ε. To
the surprise of many, this arrived in December, just in time to disrupt family Christmases throughout the world.
Good timing. Since it was truly a test release, it did not have all the bits that we have been led to expect in the
Companion. In passing, printed and bound copies of theLATEX Companionare stated to exist. Frank Mittelbach says
he has one (but then, he would. . .). I wouldn’t have thought he needed one, unlike the rest of us. It seems to have
been relatively painless to install, from the messages which flitted around, although running it gives you even more
file name extensions to contend with—just when you thought you had come to grips with the profligacy of LATEX in
creating extra files for itself!

It’s a relief to see something substantive like this out for use. If there are worries though, it must be whether this
will distract attention from the serious matter in hand—LATEX3. On the other hand, it will soften us up a little, first
by accustoming us to regular upgrades/updates (just like Word for Windows!), but more importantly ensuring that the
communications channels work consistently. To a large extent this is going to be software distributed and supported
electronically. One of the features I like is that queries will not be entertained if you are using an ‘obselete’ version of
LATEX 2ε.

–32–

Letters to the editor

I’m becoming confused how I should write LATEX! Just the logo—mostly I can handle LATEX itself. If I look through
TTN andTUGboat, I can find quite a few instances where the preferred form is given as LATEX, or even LATEX–this
latter form is especially prevalent when you see it written as (LA)TEX. Maybe consistency will return when the results
of the A-in-LATEX competition are announced.

Is the NTS project poised to take over the world? News from the NTS project is always to be treasured, since
it has all the hallmarks of an inner cabal composed of a secret elite: Phil Taylor’s article inTUGboatrevealed that
besides trying singlehandedly to resurrect the economies of eastern europe, it is proposing to start to issue a ‘canonical
TEX kit’ (you can always tell when Phil is involved: ‘canonical’ sprouts everywhere!). This has the laudable aim to
identify what a standard (‘canonical’) implementation should contain, and to liaise with developers and implementors
to ensure that this is distributed with each TEX implementation. Praiseworthy and necessary as this step is, I’m not
myself clear how this relates to the desire to develop a new typesetting system. In the same issue ofTUGboat, Nelson
Beebe encourages vendors to include hisbibclean utilities with each distribution. Will this be part of the NTS
canon too?

Of course there is more. The simple existence of a piece of software does not mean that it has all the same attributes
when run on different platforms. I am minded of Makeindex, which exists in some different incarnations with differing
capabilities in terms of size of index it can handle. Since the aim of the canon is to ease the transfer of documents from
site to site, the support software must be capable of handling the same sizes of problems too. Will the project be taking
on this role of guardian of compatibility?

I suspect that underlying this is another agenda altogether. Identify the project to implementors and developers as
the (self-selected) body in the TEX world which somehow authorises the suitability of TEX-related applications. In this
way it makes itself the legitimate heir to Knuth as far as this sort of software development is concerned. It’s a strategy
that might work.

You may wonder how it leaves the user groups who are already starting to produce this sort of ‘TEX kit’. I do.
TUGboatreaders will have noted that the journal is pretty well on schedule. My December issue arrived at the

beginning of the year. For many people this is a welcome sign. There was a time when we felt lucky to getTUGboat
within about 6 months of its hypothetical publication date (even then, better than EP-odd!). There has been a price to
pay. Frequency is still a little problematic (two issues this year came out very close together, but you could just say that
one was late and its successor on time), but more significant, one issue, the conference proceedings, is virtually half
of the total mass—in other words, three ‘normal’ issues constitute about the same amount of verbal as the conference.
Last year ran to about 450 pages: in 1989, it was over 750. Even arguing that TTN is removing some ‘mass’, then the
volume is still slimmer. We could also argue that the multiplicity of ‘competing’ journals has taken some articles away
(but a cursory glance of the Dutch group’s MAPS will demonstrate that much is just recycled between journals). Is
there a worrying trend in motion: thin and timely?

–33–

X Letters to the editor

1 A TEX front-end in NextStep

Like most readers ofBaskerville, I greatly enjoyed S. Rahtz’s survey of TEX front-ends in the December 1993 number.
I noticed that he had not mentioned one very interesting and useful such system—Tom Rokicki’s implementations of
TEX for the NextStepoperating system—and I am writing to briefly discuss its most interesting features.NextStepis a
superior graphical user interface that sits on top of BSD4.3 Unix. Now that NeXT has ceased the manufacture of their
trademark black Motorola hardware, the Intel-486 implementation ofNextStepis their flagship product.

Although you can invoke ‘NeXTTEX’ via the usual command line, the value of this TEX lies in the integrated
environment, calledTEXView, to which it belongs. Begin by preparing a usual source file with atex extension, and
double-click to begin TEXing. TEXViewautomatically begins its preview as soon as the first page is ready. That is,
while TEX is still typesetting the remainder of the document, page 1 is already there for your perusal. Simple mouse
click commands zoom this display and drag and scroll the preview image in the preview window.dvips is a part of
TEXView, and so it is possible to include color in your typesetting, and very easily, too.NextStepis built around Display
PostScript, soTEXViewreadily offers all PostScript fonts in the document for onscreen display, and color if you use a
color monitor. Of course, includedepsf files are also displayed. (Color is rendered in an appropriate shade of gray
on the typical PostScript b&w printer.) There is an option for ‘printing’ to fax.

I can’t resist the temptation to note two extensions Tom has added to TEX proper. If the first line of a source file is
~&foo , then the command

tex myfile

invokes the format file&foo ; that is, it is equivalent to the commandtex &foo myfile . Output stream 18 will
pipe commands to Unix. It’s possible to sort and input an index file (say) in one fell swoop via commands like:

\immediate\write18{mysort <index.raw >index.sort}
\input index.sort

in your source file.

Alan Hoenig

17 Bay Avenue, Huntington, NY 11743 USA

ajhjj@cunyvm.cuny.edu

2 Command line TEX for ever

I notice from at least two articles in the current issue ofBaskerville(Vol. 3, No. 2) that there appears to be some
zeitgeistwithin which the long-established, traditional and highly logical method of using TEX and its adjuncts is
brought into question; I refer, of course, to the articles by R. Allan Reese (p. 3, col. 1, para. -2), and by your esteemed
self (p. 4, col. 1, para. -5).

In particular, I wish to take issue with your assertion that: “Every TEX user knows that the traditional command-
line way of working (the ‘edit; compile;{preview, print}’ cycle) is far from ideal.” This assertion, Sir, is blatantly
and demonstrably flawed. There exists at least one TEX user (and, I suggest Sir, many many more) who iscompletely
satisfied with this way of working, and who regards any and every attempt to protect the intellectually-challenged from
the realities ofreal computing by encapsulating trivial tasks in a so-called ‘development environment’ as a fruitless
and totally misguided activity.

I remain, Sir, your most humble and obedient servant:

Philip Taylor.

P.S. I see that our esteemed sometime Chairman, Malcolm Clark, now has adopplegangerwho is also contributing
to the columns ofBaskerville; who is this pretender to the throne who dares assert “We’ve been nice guys for too
long.”?

reprinted from Baskerville Volume 4, Number 1

UKTUG Business Reports

3 JoveLATEX nods

I see from the current issue ofBaskerville(Vol. 3, No. 2) that the dotfill leaders for the table of contents no longer
align; is this yet another demonstration of the inferiority of LATEX when compared to the Real Thing?

I remain, Sir, Yours etc.,

Philip Taylor

–35–

XI UKTUG Business Reports

1 Membership of UK TEX Users Group (1994)

This issue ofBaskervilleis being posted to 1993 members. Below I present the details of the 1992/3 Income and
Expenditure and Balance sheet. The cost of distributing each issue ofBaskervilleis quite considerable and the group’s
funds, whilst reasonably healthy, cannot stand avoidable expenditure. Please renew your membership as soon as pos-
sible. I am grateful to those who have already paid, as it helps the committee to plan its expenditure for the year. 1994
memberships have been acknowledged by email (or paper mail if no email is available). Please contact me if you have
renewed andnot received an acknowledgement.

1.1 Membership Data
1993 1994

UKTUG 31 11
TUG 11
TUG and UKTUG 136 47
TUG and UKTUG (student) 3 3

(as at 7th January 1994)

reprinted from Baskerville Volume 4, Number 1

UKTUG Business Reports

2 UKTUG accounts 1 October 1992 to 19 August 1993

2.1 Statement of Income and Expenditure
INCOME
Membership (see separate table) £6,248.80
LATEX3.0 contributions £402.50
UK Book sales £43.30
Sale of mailing labels £45.00
Income from meetings
October 1992 £230.00
January 1993 £982.50
April 1993 £1,878.89

Subtotal £3,091.39 £3,091.79

TUG’93 Conference fees £35,640.79 £35,640.79

Total income £45,472.09

EXPENDITURE
Postage, copying, stationery £400.92
Committee Expenses £429.20
TEX and TUG News Printing £4,053.06
Books £59.88
Meeting costs: EPS £191.24
October 1992 £304.60
January 1993 £509.23
April 1993 £3,400.94

Bank charges £30.00
Bounced cheque £10.00
LATEX3.0 fund £263.00
TUG’93 conference £28,197.58
Subtotal £37,849.65

Total expenditure £37,849.65

SURPLUS £7,622.44

2.2 Balance sheet
CURRENT ASSETS
Debtors: TTN £4,053.06
TUG(TEXhax) £3,338.90

Cash in hand £0.00
Cash in bank £13,494.35
Total assets £20,886.31 £20,886.31

CURRENT LIABILITIES
Creditors: TUG’93 (£7,443.21)
TUG memb. fees (£4,549.00)
Donation to TUG’93 travel fund (£500.00)
LATEX3.0 fund (£389.50)

Total liabilities (£12,881.71) (£12,881.71)

BALANCE £8,004.60

2.3 Position with regard to opening balance
OPENING BALANCE £5,872.22
SURPLUS £7,622.44
CLOSING BALANCE £13,494.66

–37–

	Editorial
	emph {Baskerville} articles needed
	LaTeXe
	TUG'94
	Colophon

	Mixing and matching PostScript fonts
	Introduction
	Matching fonts
	Matching heights
	Matching widths
	Matching weight
	Results

	Conclusion

	Building virtual fonts with `fontinst'
	Introduction
	A problem with fonts
	A solution: virtual fonts
	A problem with virtual fonts
	A solution: the `fontinst' package
	Using the `fontinst' package

	Do you textbf {really} need virtual fonts?
	Easy, totally general reencoding
	Further thoughts on virtual fonts dots
	Colour slides with LaTeX and texttt {seminar}{}
	Slides and LaTeX
	Using the texttt {seminar}{} style
	Frame styles
	Interleaving notes, and selecting subsets
	Control over slide size, fonts and magnification
	Advanced use: customing the texttt {seminar} control file

	Back(s)lash
	Topical tip: Numbering theorems and corollaries in LaTeX
	Malcolm's Gleanings
	Book review

	Information design journal
	Nonsense
	Letters to the editor
	A TeX front-end in emph {NextStep}
	Command line TeX for ever
	strikethrough {Jove} LaTeX nods

	UKTUG Business Reports
	Membership of UK TeX Users Group (1994)
	Membership Data

	UKTUG accounts 1 October 1992 to 19 August 1993
	Statement of Income and Expenditure
	Balance sheet
	Position with regard to opening balance

